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Abstract

In many experimental situations the pertinent inferences are

made on the basis of orthogonal contrasts among the treatment means

(as in 2 n factorial experiments). In this setting a particularly

useful form of inference is one involving multiple comparisons. The

present paper describes situations in which such inferences are mean-

ingful, gives examples of their use, and provides an extensive set of

tables of constants needed to implement such multiple comparison procedures.

The procedures can also be used for statistically legitimate ''data snooping"?

(in the sense of Scheffe (1959), p. 80) to help decide which contrasts

within a specified set warrant further study.

KEY WORDS: Multiple comparisons, orthogonal contrasts, joint confidence

intervals, experimentwise error rates, Studentized maximum modulus,

simultaneous inference.



1. INTRODUCTION

The results of many planned experiments can be analyzed in terms

of meaningful orthogonal contrasts among treatment means. This is the

situation, for example, in 2n factorial experiments, and in experiments

with quantitative factors for which orthogonal polynomials (Fisher and

Yates (1938-1963); Davies (1978), Appendix 8C) are employed to fit a

regression curve or surface; Cochran and Cox (1957), Sections 3.4-3.5,

discuss orthogonal contrasts in some detail. Ackermann (1979) proved a

general formula to calculate the values of orthogonal polynomials for

the case of nonequidistant levels and unequal numbers of observations.

For hypothesis testing the orthogonality of the treatment contrasts

makes it possible to partition the sum of squares for treatments into

a set of one-degree-of-freedom sums of squares which add up to the sum

of squares for treatments; under normality each individual sum of squares
" 2

associated with one of the treatment contrasts is distributed as x

with one degree of freedom, independently of all of the other individual

sums of squares. The orthogonality of the treatment contrasts also guarantees

that their usual best linear unbiased estimators are normally and independently

distributed.

If only one contrast is of interest, then Student's t can be used for

hypothesis testing or for interval estimation. However, in most experiments

there is more than one contrast which is of interest. The problem then

becomes somewhat more complicated for joint inferences are now involved, and

the experimenter may desire to control the experimentwise error rate. Thus,

e.g., when two or more hypotheses are each tested separately at level of

significance a using (say) Student's t, the experimentwise error rate

(which controls the probability of at least one false positive) is greater
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than a. To help compensate for this effect some experimenters use,

for each test, a common value of a which is smaller than the one that

would typically be employed if only one hypothesis were being tested;

others use critical values based on Bonferoni inequalities. (The

problem is further complicated by the fact that the individual tests

are not independent since each usually employs the same residual

mean square as the estimator of the underlying variance.) Analogous

problems arise when two or more orthogonal contrasts are to be estimated

jointly using one-sided or two-sided confidence intervals.

In the present paper we shall mainly consider joint two-sided

confidence interval estimation of orthogonal contrasts; the joint con-

fidence interval approach is usually more relevant than joint hypothesis

testing. In any case, joint interval estimation can easily be re-formulated

as joint hypothesis testing. We shall describe situations in which the

joint interval estimation approach would appear to be appropriate, and

show how to make exact confidence statements concerning the joint interval

estimates of the orthogonal contrasts which are of interest. In Section 2

we provide an extensive set of tables of constants which are needed

to implement the procedure. The constants are based on a special case

of the multivariate Student's t of Dunnett and Sobel (1954) and Cornish

(1954). The theory underlying these tables is given in Section 2 along

with a description of the method underlying their construction, and

comments on the accuracy of the entries therein. Section 3 describes

some examples of the application of the tables.
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2. DISTRIBUTION THEORY AND TABLES

2.1 Distribution theory

We assume that the random variables Y.. (1 < i < k; j 1,2...,N)

are independent and normally distributed with E{Yi } = i and
2 2 k

Var{Yi } = 2 , the (pi}  and a2 being unknown. Define e c .w.
i J.

(I < m < p) where the c . (1 < i < k, I I m < p) are specified constants
k mi

such that Z cmi 0 (1 < mp). The e represent a family of p
ml = - m

contrasts among the ui; we suppose that the experimenter is interested

in obtaining two-sided interval estimates of the e with specified jointm

confidence coefficient 1-a. Such interval estimators with the required

joint confidence coefficient are given by

B m: e m hi c 2.s2IN ( < m < p)

k N • 2
where e =  cm±;.' .i Y../N, S is the usual unbiased estimate

i=l. j=l
2 22 X2.

of a based on v d.f. (vS2/a is distributed as independently

of p = . )), and h is a constant chosen to satisfy

p
P{ n B } 1-a.mm=l

In order to determine the value of h to be used, we note that

has a p-variate normal distribution NCQI, ) where the elements of

are given by

k 2
mm 2  Y c )a N (1 < ml,m 2  p).

i=l 1 2

Then the distribution of Z = (TI,.. .,T) where
p



T. = -)/ c2.2IN

is a central p-variate Student t-distribution with v d.f. Its joint

density function (see Dunnett and Sobel (1954) or Cornish (1954)) is given

by

f(t,... 9t JAI- v+P)12 ' r + a. tt 2 (2.1)V p(v vr)p l2 ( v /2 ) L jl =l j 2 = 2 i j

where the (aj2 are the elements of ' = V-. Let =(171 ,.-.,ITp )

where has the joint density function (2.1), and let

G (h;pk ) = P{T I < h (1 < m < p)}

h hf f "' J* (ti,...,t p;V)dt ...dt (2.2)

-h -h P

f fr .. f' O (xI ....x ,;k)dXl1... dx g (s)ds

0 /-hS<Xm<hS p

where O(xil,....x Xp;k) is the standard p-vatiate normal probability density

function (pdf) with correlation matrix k = {p m m } , and g V(s) is the

pdf of S. If ptali2 = P (m 2 ' m 2 , 1 < m1 ,m2 _< p) then the multiple

integral within the square brackets of (2.2) can be expressed as an iterated

integral (thus simplifying the problem of evaluating it numerically), and

(2.2) reduces to

H V(h;p,p) f / 0 h~ / ( -hs+pl d(~ g (s)ds (2.3)
01/2 4]

where 1(.) is the standard normal cdf.
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The constants h h (p,p,a) satisfying H (h;p,p) =1- have been

tabulated to two decimal places by Dunnett (1964) for p 0.5;

p = 2(1)12,15,20; a = 0.05,0.01; v = 5(1)20,24,30,40,60,120,-. Hahn

and Hendrickson (1971) tabulated h to three decimal places for

p = 0.0,0.2,0.4,0.5; p = 1(1)6(2)12,15,20; a 0.10,0.05,0.01;

V= 3(1)12,15(5)30,40,60. Other earlier tabulations are cited in Hahn

and Hendrickson. Krishnaiah and Armitage (1970) tabulated h2 to two

decimal places for p = 0.1(0.1)0.9; p = 1(1)10; a = 0.05,0.01; v = 5(1)35.

For the special case of orthogonal contrasts with which we are con-
k

cerned here, we have i mlim 2 i = (m i 2 , c c m1 ,m2 < p); hence

p = 0 and (2.3) becomes

H (h;p,0) f E[(hs)-D(-hs)]Pg (s)ds. (2.4)
0

Since p = 0 we see that Hahn and Hendrickson's Table 1 is applicable.

In this case the statistic M(p,v) = max -I c2"S2/N is
SmDi1l

known as the Studentized maximum modulus, and P{M(p,v) < h} = H (h;>,0).

Pillai and Ramachandran (1954) had earlier tabulated h for o = 0 to two

decimal places for p = 2(1)8; a = 0.05; v = 5(5)20,24,30,60,120,-. Stoline

and Ury (1979) have tabulated h to three decimal places for p = k(k-l)/2,

k = 3(1)20; a = 0.2,0.1,0.05,0.01; v = 5,7,10,12(4)24,30,40,60,120,-;

in a later paper (Ury, Stoline and Mitchell (1980)) these tables were

extended to cover k = 20(2)50(5)80,90,100; a = 0.2,0.1,0.05,0.01;

v = 20(1)40(2)60(5)120,240,480,-. (The constants tabulated by Stoline

et al. were to be used for joint two-sided interval estimates for the

k(k-l)/2 pairwise contrasts P . - . between the k population means.
1 'l2

Such contrasts are not orthogonal, but as a consequence of an inequality of

I
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idak (1967), the use of constants h determined for the case p 0

results in intervals which are conservative, i.e., they achieve a joint

confidence coefficient which exceeds the nominal i-a at the cost of

having intervals which are somewhat broader than they need be.) Earlier,

Games (1977), employing §idak's (1967) multiplicative inequality, computed

conservative constants, specifically for the problem of multiple compari-

sons for non-orthogonal contrasts, his tables give upper bounds to h

to three decimal places for p = 2(1)10(5)50; a = 0.20,0.10,0.05,0.01;

v= 2(1)30,40,60,120,-. (We mention that Chen (1979) tabulated percentage

points associated with random variables arising from a multivariate Student

t-distribution (2.1) with zero correlations. However, his tables are not

related to ours; they are used, for example, to find an interval estimate

of max{Iil....1Ik} when the estimates (l < i < k) are based on

sample sizes which are not necessarily all equal.)

In applications involving multiple comparisons for orthogonal con-

trasts, our tables provide the constants needed to obtain two-sided

interval estimates of p contrasts with joint confidence coefficient

exactly equal to the nominal value of 1-a. The tables give h = h (plz)V

to five significant figures for p = 0; p = 2(1)31; ci 0.2,0.1,0.05,0.01,

= 2(1)30(5)60,120,240,-.

2.2 Construction of the tables

In order to construct the tables it was necessary to obtain the

solution in h to H V(h;p,0) = 1-a where H (h;p,0) is given by (2.4).

To evaluate the infinite integral for finite values of v, a 96-point

Legendre quadrature formula was used (see Abromowitz and Stegun (1964),

p, 919); for v = - we have s = 1 and the infinite integral disappears.

This method of calculation is not appropriate for v 1 (since the rdf
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g (s) is then infinite at s = 0), and no h-values were computed for

v 1. The general computer program which was written for arbitrary 0

and h was first used for p 1/2, p z 2, and the probabilities obtained

were then checked against those given in Table I of Dunnett and Sobel

(l954) which had been computed using an exact series expansion; agreement

was found to the five decimal places given in each. The h-values were

also checked against those given in Hahn and Hendrickson's Table I and

in 5toline and Ury (1979), and agreed to the three decimal places given

in these tables. Our h-values are believed to be correct to the four

decimal places given.

3. ZLLUSTRATIONS OF USES OF THE TABLES

in this section we consider several types of planned exoeriments in

which the pertinent inferences are made on the basis of orthogonal con-

trasts among the treatment means. We shall point out some of the issues

involved, and indicate how the multiple comparisons prccedures used with

the appropriate constants in our tables can contrcl The exzerimentwise

error rates for such inferences.

3.1 Exzeriments involving i single qualitative factor

ExamDle 1: A 5-level exDeriment

Bennett and Franklin (1954), Section 7.34, consider an experiment

involving five different methods of analyzing the concentration of iron

in a standard solution. Two methods included agitation and three .ethods

i not: four analyses were made with each method. The orthogonal

contrasts under consideration (see their Table ?.9) were (cic 2 ..z z)

(3,3,-2,-2,-2), (!,-l,0,0,0), (0,0,2,-l,-I), (0,0,0,-,-:) for . 1,2,3,,

respectively. Here p = , 15 and from our Tables I and 2 we find
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that his(4,0,a) 3.6082 and 2.8051 for a 0.0. and 0.05,

respectively. The joint confidence intervals with an experimentwise

error rate of a are thus given by

( h4,0,a) v3s /4

± h1s(4,0,C)

(3.1)

± hi5(4,0,a) /Z/4

h (4,0,a) s/

As pointed out in the text, the breakdown into single degrees of

freedom in any particular situation will be dictated by the characteristics

of the experiment. Two cases frequently used for L-level experiments

are (C l Cm C s, ) = i i - , i ,( , I i -) ! - , ! i and

(CmlCm2 ,csm3 c)= (1,-1,0,0), (1,I,-2,0), (1,1,1,-3) for n = 1,2,3,

respectively.

If the number of analyses made with each method were not all equal,

some (and possibly all) of the contrasts under consideration would not

be orthogonal. Then the use of our h-values yields a confidence

coefficient greater than i-cL. (See gidik (1967), equation (8).)

3.2 2n factorial experiments

Example 2: A 24 experiment

Cochran and Cox (1957), Section 5.24a, analyze the yields obtained

in a 2 experiment with four fertilizers (m i manure, n z nitrogen,

p a phosphorus, k - potassium), each at two levels, conducted in four

randomized complete blocks: the experiment was carried out to study the

effects of these fertilizers on the yield of grass. The 6 yields ;er
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olot (total over 6 harvests, km. per 3-meter row) were used to compute

the effect means which were given as M = 13.3, N = 21.3, P = 5.5,

k = 24.1, MN = 3.2, MP z -0.3, MK = -7.5, NP = 3.5, NK = 10.9, PK = 3.2,

MNP = -1.4, MNK = -8.5, MPK x 0.8, YPK = 0.5, MNPK = -1.6. The

estimated standard error of an effect mean was computed to be

/s / 2 n- 2 r = V(90.5)/4(4) = 2.38 where s 2 - 90.5 is the error mean

square based on v z45 d.f., r z 4 is the number of replications

of each treatment combination, an', n = t is the number of factors.

-or v = 45 the St-udent t-values are 2.690 and 2.014 for o = 0.01 and

a = 3.05, respectively. The ef :_c-. means 2 (2.38) are exhibited

in clumns 2 and 3 of Tab,'- for 2 3.31 and a = 3.35, reszectivelv.

Cochran and Cox give analogous information in the lower half of -. eir

Table 5.1a where thoy iMntlcate effects that are statistically significant

at the 1% (.*) and 5%(*) levels, namely (M,N,K,MX,NK,M'IK) and (P),

respectively.

.c control the experimentwise error ra, the corresponding h-values

from our Tables i and 2 are h (15,3,3.31) = 3.6503 and h 5,3,3.35)

3.C803 for a a ).31 and a = 0.05, respectiveiv. -he effect means

h h45,,. (2.38) are exhibited in :olumns 4 and 5 of Table 5 for

) 3.31 and a 3.05, respectively. We note from 'olumns I 3nd

that MK and MK are now "significant" at the 5% (rather than at the

lt level) and that P is not significant at the 5% level. Thus for tnis

experiment, :ontrolling the experinentwise error rate has recuced the

number of statistically significant results.

-he experimenter must decide whether the per contrast or -e ex;eri.ment-

wise error rate is more pertinent in his particular experimer. :n..- the

extreme case of a single significant contrast, the experimenter using

oer contrast error rates would .e left feelLng .nsare whether the effect
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Table 5

A24 complete factorial experiment-

(p = 15, v 45)

2/
Confidence interval on effect mean--

Effect Error rate a Error rate a
per contrast per experiment

C 0.01 a = 0.05 a = 0.01 a = 0.05

t a5 2.690 t 4 5 = 2.014 ha5 = 3.6503 ha  = 3.0803
4445 45

M l8.0±6.4(A*) 18.0_4.8(*) l8.O8.7(* ' ) 18.0±7.3()

N 21.3±6.4(e*) 21.3±4.8(') 21.3±8.7(*'*) 2l.3_7.3(U)

P 5.5t6.4 5.5t4.8(*) 5.5±8.7 5.5±7.3

K 24.1±6.4( "*) 24.1±4.8(*) 24.I±8.7(¢:) 24.1±7.3(**)

MN 3.2±6.4 3.2±4.8 3.2±8.7 3.2±7.3

MP - 0.3±6.4 - 0.3±4.8 - 0.3±8.7 - 0.3±7.3

MK - 7.5±6.4('") - 7.5±4.8(*) - 7.5±8.7 - 7.5±7.3(€)

NP 3.5±6.4 3.5±4.8 3-.5±8.7 3.5±7.3

NK 10.9±6.4(**) !0.9±4.8(*) 10.9+8.7(**) 10.9±7.3()

PK 3.2±6.4 3.2±4.8 3.2±8.7 3.2±7.3

MNP - 1.4±6.4 - 1.4±4.8 - 1.4±8.7 - 1.4±7.3

MNK - 8.5±6.4(U*) - 8.5±4.8(*') - 8.5±8.7 - 8.5±7.3(')

MPK 0.8±6.4 0.8±4.8 0.8±8.7 0.8±7.3

NPK 0.5±6.4 0.5±4.8 0.5±8.7 0.5±7.3

MNPK - 1.6±6.4 - 1.6±4.8 - 1.6±8.7 - 1.6±7.3

!/Cochran and Cox (1957), Table 5.1a.

2/Standard error of effect mean is Vs2/2-2r = ((90.5)/4(4) = 2.38.

The entry in each cell in the body of the table is either (effect

mean) ± ta (2.38) or (effect mean) ± ha5(2.38). The intervals
45 4

indicated by (¢e*) or (*) do not cover zero.

I.
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was a real one, given that the experiment has provided multiple oppor-

tunities for one of them to be significant. On the other hand, in an

experiment with several significant contrasts as in the present example,

strict use of the experimentwise error rate procedure makes it more

difficult for the smaller effects to be declared significant after

the larger ones have been identified.

We have assumed in the above analysis that a priori the experimenter

was interested in controlling the experimentwise error for all 15

contrasts. If, a priori, he had been interested in only the 4 main

effects and the 6 two-factor interactions (and he had made that decision

without being influenced by the data) then p = 10, j = L45, and the

appropriate h-value for a = 0.01 and a = 0.05 would be 3.5l'49 and

2.9346, respectively; now MK is still significant at the 5% level and

P is still not significant at the 5% level, while the status of MNK

(as well as MNP, MPK, NPK and MNPK) in terms of possible significance

would be unknown. If, after looking at the data, the experimenter decided

that only M,N,K,NK and MNK were of interest, then he still must use

the original factor h (15,0,a) in reporting his final results.

Effectively, what he has done here is "data snooping" in the sense of

Scheffe (1959), p. 80, and he must pay for that privilege by using the

larger h-value if he desires to make statistically legitimate confidence

statements with experimentwise control over the error rate. in this

situation the inference must be limited to a particular set of orthogonal

contrasts specified in advance.

It thus is clear that in 2n complete factorial experiments where

n is "large," it is to the experimenter's advantage if he can specify
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apriori which contrasts are and/or are not of interest; analogous

considerations hold for fractional factorial experiments. In certain

types of experiments it is easy to identify certain contrasts which

are not of interest. We consider such a problem in Example 3.

Example 3: A 2 3 xermn with two classification factors

Consider a 3-factor experiment, each factor at two levels, where

the factors are diet (Diet 1 vs. Diet 2), sex (male vs. female), and

age (old vs. young). The purpose of the experiment is to study the

effect of change in diet on gain in weight. Here the treatment factor

of interest is diet while sex and age are classification variables.

Thus, denoting the main effect of diet, sex and age by A, B and C,

respectively, and analogously -for their interactions, the experimenter

would be interested in the p 4 orthogonal co'ntrasts associated with

A, AB, AC and ABC rather than in all 7 orthogonal contrasts. Similarly,

in a 2 4 experiment two of which are classification factors, the experi-

menter would be interested in at most the p = 12 orthogonal contrasts

A, B, AB, AC, AD, ACD, BC, BD, BCD, ABC, ABD, ABCD. See Cox (1958),

Examples 6.3 and 6.4, for a discussion of treatment factors and

classification factors.

3. 3 n factorial experiments, all factors quantitative

Example 4: A 3 3experiment

Davies (1978), pp. 332-336, reports the results of a 3 3experiment,

each factor quantitative and equally spaced, all treatment combinations

replicated twice. The variable under study is the yield of a chemical

process, the three factors being: i) C, the concentration of an



-21-

inorganic material (A) in the free water present in the reaction mixture,

ii) V, the volume of free water present in the reaction mixture, and

iii) N, the amount of a second inorganic material (B) in the reaction

mixture. Each factor was studied at three equally spaced levels, and

two replications of each of the 27 treatment combinations was obtained.

A quadratic response surface was fit to the data using orthogonal poly-

nomials, and the total d.f. for treatments was partitioned into 18

individual d.f. associated with the 6 main effects (C L,CQV L,V N,N Q

and the 12 two-factor interactions (CL VL, CQ×VL, CLxVQ, CQ×VQ, CTN,

C-<N, CLxNQ, CQXNQ, VL×N, VQxNL, VLxN , V XN ); the remaining 8 degrees
L LQ QQ L Q L L Q Q Q

of freedom representing the three-factor interactions were pooled. Here

the subscripts L and Q represent iInear-and quadratic, res.ectively.

There were 27 d.f. associated with the error mean square.

For v = 27 the Student t-values are 2.771 and 2.052, for a ^ .I

and a = 0.05, respectively. Using these values (actually the corresponding

"27 7 ) values were used) Davies rencrted the 8 effects

( L, C , VL VQ, ." CV 'V. CV×', ) as beina statistically
L ~ ~ L L '' ' -~~

sicnificant at the 1% level and the effects (No, C, ) sni,*ican -

at the 10% level. (Note: We are reporting the results here as tests zz

significance to conform with Davies, but we would have preferred tc present

our results as interval estimates as in our Table 5.)

To control the experimentwise error rate the corresponding h-values

from our Tables 1, 2 and 3 are h27(13,0,0.01) 3.3989, h 2( ,2,C.5)

3.2560, and h2 7(18,0,0.10) = 2.9582 fcr a 0.01, a = 0.05 and

o 0.10, respectively. Thus, if the experimenter wished to control the
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experimentwise error rate for the 18 orthogonal contrasts of interest
he would assert that the 3 effects (C CQ, CLV) are significant

T- Q' Lx L)arsinfct

at the 1% level, the 3 effects (V,, VQ, C×N ) are significant at the

5% level, the one effect (CXV L ) is significant at the 10% level, and

the remaining 11 effects are not significant at the 10% level. (The

experimenter had decided a priori that the 3 effects associated with the

three-factor interactions were not of interest, and hence this total sum

of squares based on 8 d.f. was not partitioned into the 8 individual

one d.f. sums of squares associated with each of the remaining relevant

orthogonal contrasts.)

Thus the same considerations arise in the analysis of this exneriment

as arose in the analysis of the 2 experiment of Exampie 2. And the

same caveats hold here as well.

3.4 An application to biological assay

The purpose of biological assay is to estimate the potency ratic,

3, of two biological preparations which have dose-response curves which

can be represented by the same form of regression function and which

differ only in the factor p in the dose scale. (We use the symbol

P here as in Finney (1978), p. 41.) A common situation is one in which

the response scale is linear in log dose. In this case parallel straight

lines can be fit to the two sets of data; an estimate ot log p is then

given by the horizontal distance between them. A useful experimental

design for such situations is the so-called symmetric (k,k)-point design

in which k dose levels equally spaced on a log scale are used for each

preparation (the k levels being different for the two preparations)

with n observations being taken at each of the 2k design points;



-23-

the usual values for k are 2, 3 or u. See Finney (1978), D. lOS.

In analyzing the data from a (k,k) bioassay, the sum of squares

between treatments has 2k-1 d.f. which can be separated into 2k-I

meaningful orthogonal components. See Finney (1978). pp. 135-39, for

an example with k 3 where the 5 orthogonal contrasts are jenoted by °

(preparations), L. (average linear regression), L{ (parallelism),

L2 (average quadratic regression), L' (difference between quadratics).

The first two enter into the calculation of the estimated relative 2otenc;

while the remaining three are used to test the validity of the assay.

However, significance tests at level a = 0.35 for each of these three

will result in an error rate for the assay approaching I - (!-a)'

ifit Is desired to-control the exoerimentwise error rate at a soeCif:ed

value a, then the constants h tabulated in our paper can be used.

To appLy our constants to Finney's examole, the largest of the

three mean squares for the validity contrasts, which here is L2 having

a value of 0.001606 (see Finney's table 5.2.2), is expressed as a ratio

to the error mean square based on 30 d.f.; this ratio then is compared for
2 -24 .3 nta

0.05 with (h30 (3,0,0.05)) (2.5 instead or reer
itotbeof (t Il )2 =)(.0

it to tables o ( (2.042 2 4.17. In this experimel- the

ratio is only 0.52, a clearly non-significant result.

In Finney's description, the contrast L is also considered as aP

test of a type of assay validity, and as such it could be included with

the other three to form a set of four simultaneous tests involving orthogonal

contrasts. Actually, L_ provides a measure of how successful the exteri-

menter has been in choosi.ng comparable dose levels of the two preparations,

and a significant value provides a signal to the experimenter that he might

6h , -Jo
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be comparing the two preparations at different portions of the dose-

response curve rather than necessarily invalidating the assay. Thus it

might be preferable to consider it separately from the other three

validity contrasts, as illustrated in the preceding paragrap'.

Similar considerations apply with more than three dose levels of

each preparation. For example, in a (4,4) bioassay there would be 5

orthogonal contrasts in addition to Lp and L I ' If linearity is

assumed then these provide 5 separate tests for assay validity which can

be tested by using hV(5,0,a) from our tables in order to achieve an

experimentwise error a for the validity tests. On the other hand, if

a quadratic dose response curve is assumed, two of them enter into the

calculation of the estimated potency, as described by Finney (1978),

p. 122, leaving a set of 3 orthogonal contrasts to test the validity of

the bioassay.
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